Cyber security

Agentic Security – Enhancing LLM Resilience With Open-Source Vulnerability Scanning

In an era where large language models (LLMs) are integral to technological advancements, ensuring their security is paramount.

Agentic Security offers a pioneering open-source vulnerability scanner designed to robustly test and enhance the resilience of LLMs.

This tool not only integrates seamlessly but also provides customizable attack simulations to safeguard against emerging threats.

Features

  • Customizable Rule Sets or Agent based attacks
  • Comprehensive fuzzing for any LLMs
  • LLM API integration and stress testing
  • Wide range of fuzzing and attack techniques
ToolSourceIntegrated
Garakleondz/garak
InspectAIUKGovernmentBEIS/inspect_ai
llm-adaptive-attackstml-epfl/llm-adaptive-attacks
Custom Huggingface Datasetsmarkush1/LLM-Jailbreak-Classifier
Local CSV Datasets

Note: Please be aware that Agentic Security is designed as a safety scanner tool and not a foolproof solution. It cannot guarantee complete protection against all possible threats.

Installation

To get started with Agentic Security, simply install the package using pip:

pip install agentic_security

Quick Start

agentic_security

2024-04-13 13:21:31.157 | INFO     | agentic_security.probe_data.data:load_local_csv:273 - Found 1 CSV files
2024-04-13 13:21:31.157 | INFO     | agentic_security.probe_data.data:load_local_csv:274 - CSV files: ['prompts.csv']
INFO:     Started server process [18524]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8718 (Press CTRL+C to quit)
python -m agentic_security
# or
agentic_security --help


agentic_security --port=PORT --host=HOST

LLM kwargs

Agentic Security uses plain text HTTP spec like:

POST https://api.openai.com/v1/chat/completions
Authorization: Bearer sk-xxxxxxxxx
Content-Type: application/json

{
     "model": "gpt-3.5-turbo",
     "messages": [{"role": "user", "content": "<<PROMPT>>"}],
     "temperature": 0.7
}

Where <<PROMPT>> will be replaced with the actual attack vector during the scan, insert the Bearer XXXXX header value with your app credentials.

Adding LLM Integration Templates

TBD

....

For more information click here.

Varshini

Varshini is a Cyber Security expert in Threat Analysis, Vulnerability Assessment, and Research. Passionate about staying ahead of emerging Threats and Technologies.

Recent Posts

Playwright-MCP : A Powerful Tool For Browser Automation

Playwright-MCP (Model Context Protocol) is a cutting-edge tool designed to bridge the gap between AI…

3 weeks ago

JBDev : A Tool For Jailbreak And TrollStore Development

JBDev is a specialized development tool designed to streamline the creation and debugging of jailbreak…

3 weeks ago

Kereva LLM Code Scanner : A Revolutionary Tool For Python Applications Using LLMs

The Kereva LLM Code Scanner is an innovative static analysis tool tailored for Python applications…

3 weeks ago

Nuclei-Templates-Labs : A Hands-On Security Testing Playground

Nuclei-Templates-Labs is a dynamic and comprehensive repository designed for security researchers, learners, and organizations to…

3 weeks ago

SSH-Stealer : The Stealthy Threat Of Advanced Credential Theft

SSH-Stealer and RunAs-Stealer are malicious tools designed to stealthily harvest SSH credentials, enabling attackers to…

3 weeks ago

ollvm-unflattener : A Tool For Reversing Control Flow Flattening In OLLVM

Control flow flattening is a common obfuscation technique used by OLLVM (Obfuscator-LLVM) to transform executable…

3 weeks ago