Cyber security

Agentic Security – Enhancing LLM Resilience With Open-Source Vulnerability Scanning

In an era where large language models (LLMs) are integral to technological advancements, ensuring their security is paramount.

Agentic Security offers a pioneering open-source vulnerability scanner designed to robustly test and enhance the resilience of LLMs.

This tool not only integrates seamlessly but also provides customizable attack simulations to safeguard against emerging threats.

Features

  • Customizable Rule Sets or Agent based attacks
  • Comprehensive fuzzing for any LLMs
  • LLM API integration and stress testing
  • Wide range of fuzzing and attack techniques
ToolSourceIntegrated
Garakleondz/garak
InspectAIUKGovernmentBEIS/inspect_ai
llm-adaptive-attackstml-epfl/llm-adaptive-attacks
Custom Huggingface Datasetsmarkush1/LLM-Jailbreak-Classifier
Local CSV Datasets

Note: Please be aware that Agentic Security is designed as a safety scanner tool and not a foolproof solution. It cannot guarantee complete protection against all possible threats.

Installation

To get started with Agentic Security, simply install the package using pip:

pip install agentic_security

Quick Start

agentic_security

2024-04-13 13:21:31.157 | INFO     | agentic_security.probe_data.data:load_local_csv:273 - Found 1 CSV files
2024-04-13 13:21:31.157 | INFO     | agentic_security.probe_data.data:load_local_csv:274 - CSV files: ['prompts.csv']
INFO:     Started server process [18524]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8718 (Press CTRL+C to quit)
python -m agentic_security
# or
agentic_security --help


agentic_security --port=PORT --host=HOST

LLM kwargs

Agentic Security uses plain text HTTP spec like:

POST https://api.openai.com/v1/chat/completions
Authorization: Bearer sk-xxxxxxxxx
Content-Type: application/json

{
     "model": "gpt-3.5-turbo",
     "messages": [{"role": "user", "content": "<<PROMPT>>"}],
     "temperature": 0.7
}

Where <<PROMPT>> will be replaced with the actual attack vector during the scan, insert the Bearer XXXXX header value with your app credentials.

Adding LLM Integration Templates

TBD

....

For more information click here.

Varshini

Varshini is a Cyber Security expert in Threat Analysis, Vulnerability Assessment, and Research. Passionate about staying ahead of emerging Threats and Technologies.

Recent Posts

Promptmap

Prompt injection is a type of security vulnerability that can be exploited to control the…

1 day ago

Firefly – Black Box Fuzzer For Web Applications

Firefly is an advanced black-box fuzzer and not just a standard asset discovery tool. Firefly…

1 day ago

Winit : Cross-Platform Window Creation And Management In Rust

Winit is a robust, cross-platform library designed for creating and managing windows in Rust applications.…

1 day ago

Browser Autofill Phishing – The Hidden Dangers And Security Risks

In today’s digital age, convenience often comes at the cost of security. One such overlooked…

1 day ago

Terminal GPT (tgpt) – Your Direct CLI Gateway To ChatGPT 3.5

Terminal GPT (tgpt) offers a seamless way to bring the power of ChatGPT 3.5 directly…

1 day ago

garak, LLM Vulnerability Scanner : The Comprehensive Tool For Assessing Language Model Security

garak checks if an LLM can be made to fail in a way we don't…

4 days ago