Explore the cutting-edge DataComp-LM (DCLM) framework, designed to empower researchers and developers with the tools to construct and optimize large language models using diverse datasets.
DCLM integrates comprehensive data handling procedures and scalable model training techniques, setting new benchmarks in efficiency and performance in the field of artificial intelligence.
DataComp-LM (DCLM) is a comprehensive framework designed for building and training large language models (LLMs) with diverse datasets.
It offers a standardized corpus of over 300T unfiltered tokens from CommonCrawl, effective pretraining recipes based on the open_lm framework, and an extensive suite of over 50 evaluations.
This repository provides tools and guidelines for processing raw data, tokenizing, shuffling, training models, and evaluating their performance.
DCLM enables researchers to experiment with various dataset construction strategies across different compute scales, from 411M to 7B parameter models.
Our baseline experiments show significant improvements in model performance through optimized dataset design.
Already, DCLM has enabled the creation of several high quality datasets that perform well across scales and outperform all open datasets.
For more information click here.
Kali Linux 2024.4, the final release of 2024, brings a wide range of updates and…
This Go program applies a lifetime patch to PowerShell to disable ETW (Event Tracing for…
GPOHunter is a comprehensive tool designed to analyze and identify security misconfigurations in Active Directory…
Across small-to-medium enterprises (SMEs) and managed service providers (MSPs), the top priority for cybersecurity leaders…
The free and open-source security platform SecHub, provides a central API to test software with…
Don't worry if there are any bugs in the tool, we will try to fix…