Eyeballer : Convolutional Neural Network For Analyzing Pentest

Eyeballer is meant for large-scope network penetration tests where you need to find “interesting” targets from a huge set of web-based hosts.

Go ahead and use your favorite screenshotting tool like normal (EyeWitness or GoWitness) and then run them through Eyeballer to tell you what’s likely to contain vulnerabilities, and what isn’t.

Setup

Eyeballer uses TF.keras on Tensorflow 2.0. This is (as of this moment) still in “beta”. So the pip requirement for it looks a bit weird. It’ll also probably conflict with an existing TensorFlow installation if you’ve got the regular 1.0 version installed. So, heads-up there. But 2.0 should be out of beta and official “soon” according to Google, so this problem ought to solve itself in short order.

Download required packages on pip:

sudo pip3 install -r requirements.txt

Or if you want GPU support:

sudo pip3 install -r requirements-gpu.txt

NOTE: Setting up a GPU for use with TensorFlow is way beyond the scope of this README. There’s hardware compatibility to consider, drivers to install… There’s a lot. So you’re just going to have to figure this part out on your own if you want a GPU. But at least from a Python package perspective, the above requirements file has you covered.

Training Data You can find our training data here:

https://www.dropbox.com/sh/7aouywaid7xptpq/AAD_-I4hAHrDeiosDAQksnBma?dl=1

Pretty soon, we’re going to add this as a TensorFlow DataSet, so you don’t need to download this separately like this. It’ll also let us version the data a bit better. But for now, just deal with it. There’s two things you need from the training data:

  • images/ folder, containing all the screenshots (resized down to 224×140. We’ll have the full-size images up soon)
  • labels.csv that has all the labels
  • bishop-fox-pretrained-v1.h5 A pretrained weights file you can use right out of the box without training.

Copy all three into the root of the Eyeballer code tree.

Predicting Labels

To eyeball some screenshots, just run the “predict” mode:

eyeballer.py –weights YOUR_WEIGHTS.h5 predict YOUR_FILE.png

Or for a whole directory of files:

eyeballer.py –weights YOUR_WEIGHTS.h5 predict PATH_TO/YOUR_FILES/

Eyeballer will spit the results back to you in human readable format (a results.html file so you can browse it easily) and machine readable format (a results.csv file).

Training

To train a new model, run:

eyeballer.py train

You’ll want a machine with a good GPU for this to run in a reasonable amount of time. Setting that up is outside the scope of this readme, however.

This will output a new model file (weights.h5 by default).

Evaluation

You just trained a new model, cool! Let’s see how well it performs against some images it’s never seen before, across a variety of metrics:

eyeballer.py –weights YOUR_WEIGHTS.h5 evaluate

The output will describe the model’s accuracy in both recall and precision for each of the program’s labels. (Including “none of the above” as a pseudo-label)

Example Labels

R K

Recent Posts

Nmap cheat sheet for beginners

Nmap (Network Mapper) is a free tool that helps you find devices on a network,…

1 day ago

Understanding the Model Context Protocol (MCP) and How It Works

Introduction to the Model Context Protocol (MCP) The Model Context Protocol (MCP) is an open…

1 week ago

The file Command – Quickly Identify File Contents in Linux

While file extensions in Linux are optional and often misleading, the file command helps decode what a…

1 week ago

How to Use the touch Command in Linux

The touch command is one of the quickest ways to create new empty files or update timestamps…

1 week ago

How to Search Files and Folders in Linux Using the find Command

Handling large numbers of files is routine for Linux users, and that’s where the find command shines.…

1 week ago

How to Move and Rename Files in Linux with the mv Command

Managing files and directories is foundational for Linux workflows, and the mv (“move”) command makes it easy…

1 week ago