FATT (fingerprintAllTheThings) is a pyshark based script for extracting network metadata and fingerprints from pcap files and live network traffic.
A script for extracting network metadata and fingerprints such as JA3 and HASSH from packet capture files (pcap) or live network traffic. The main use-case is for monitoring honeypots, but you can also use it for other use cases such as network forensic analysis. fatt works on Linux, macOS and Windows.
Note that fatt uses pyshark (a python wrapper for tshark) and therefore the performance is not great! But that’s not a big issue as obviously this is not a tool you use in production. You can use other network analysis tools such as Bro/Zeek, Suricata or Netcap for more serious use cases. Joy is another great tool you can use for capturing and analyzing network flow data.
Other than that, I’m working on a go based version of fatt which is faster, and you can use its libraries in your gopacket based tools such as packetbeat. I released the initial version of its gQUIC library (QUICk).
Also Read – Manati : A Web-Based Tool To Assist The Work Of The Intuitive Threat Analysts
You need to first install tshark. Make sure you have the version v2.9.0 or later. Tshark/Wireshak renamed ‘ssl’ to ‘tls’ from version v2.9.0, and fatt is written based on the new version of tshark.
If you have an old version of tshark (< v2.9.0), you can use the fatt script from “old-tshark” branch.
cd fatt/
pip3 install
pipenv pipenv install
OR just install pyshark if you don’t want to use a virtual environment:
pip3 install pyshark==0.4.2.2
To activate the virtualenv, run pipenv shell:
$ pipenv shell
Launching subshell in virtual environment…
bash-3.2$ . /Users/adel/.local/share/virtualenvs/fatt-ucJHMzzt/bin/activate (fatt-ucJHMzzt) bash-3.2$ python3 fatt.py -h
Alternatively, run the command inside the virtualenv with pipenv run
:
$ pipenv run python3 fatt.py -h
Output:
usage: fatt.py [-h] [-r READ_FILE] [-d READ_DIRECTORY] [-i INTERFACE]
[-fp [{tls,ssh,rdp,http,gquic} [{tls,ssh,rdp,http,gquic} …]]]
[-da DECODE_AS] [-f BPF_FILTER] [-j] [-o OUTPUT_FILE]
[-w WRITE_PCAP] [-p]
A python script for extracting network fingerprints
Optional Arguments:
-h, –help show this help message and exit
-r READ_FILE, –read_file READ_FILE
pcap file to process
-d READ_DIRECTORY, –read_directory READ_DIRECTORY
directory of pcap files to process
-i INTERFACE, –interface INTERFACE
listen on interface
-fp [{tls,ssh,rdp,http,gquic} [{tls,ssh,rdp,http,gquic} …]], –fingerprint [{tls,ssh,rdp,http,gquic} [{tls,ssh,rdp,http,gquic} …]]
protocols to fingerprint. Default: all
-da DECODE_AS, –decode_as DECODE_AS
a dictionary of {decode_criterion_string:
decode_as_protocol} that is used to tell tshark to
decode protocols in situations it wouldn’t usually.
-f BPF_FILTER, –bpf_filter BPF_FILTER
BPF capture filter to use (for live capture only).’
-j, –json_logging log the output in json format
-o OUTPUT_FILE, –output_file OUTPUT_FILE
specify the output log file. Default: fatt.log
-w WRITE_PCAP, –write_pcap WRITE_PCAP
save the live captured packets to this file
-p, –print_output print the output
$ python3 fatt.py -i en0 –print_output –json_logging
192.168.1.10:59565 -> 192.168.1.3:80 [HTTP] hash=598c34a2838e82f9ec3175305f233b89 userAgent=”Spotify/109600181 OSX/0 (MacBookPro14,3)”
192.168.1.10:59566 -> 13.237.44.5:22 [SSH] hassh=ec7378c1a92f5a8dde7e8b7a1ddf33d1 client=SSH-2.0-OpenSSH_7.9
13.237.44.5:22 -> 192.168.1.10:59566 [SSH] hasshS=3f0099d323fed5119bbfcca064478207 server=SSH-2.0-babeld-80573d3e
192.168.1.10:59584 -> 93.184.216.34:443 [TLS] ja3=e6573e91e6eb777c0933c5b8f97f10cd serverName=example.com
93.184.216.34:443 -> 192.168.1.10:59584 [TLS] ja3s=ae53107a2e47ea20c72ac44821a728bf
192.168.1.10:59588 -> 192.168.1.3:80 [HTTP] hash=598c34a2838e82f9ec3175305f233b89 userAgent=”Spotify/109600181 OSX/0 (MacBookPro14,3)”
192.168.1.10:59601 -> 216.58.196.142:80 [HTTP] hash=d6662c018cd4169689ddf7c6c0f8ca1b userAgent=”curl/7.54.0″
216.58.196.142:80 -> 192.168.1.10:59601 [HTTP] hash=c5241aca9a7c86f06f476592f5dda9a1 server=gws
192.168.1.10:54387 -> 216.58.203.99:443 [QUIC] UAID=”Chrome/74.0.3729.169 Intel Mac OS X 10_14_5″ SNI=clientservices.googleapis.com AEAD=AESG KEXS=C255
JSON output:
$ cat fatt.log
{“timestamp”: “2019-05-28T03:41:25.415086”, “sourceIp”: “192.168.1.10”, “destinationIp”: “192.168.1.3”, “sourcePort”: “59565”, “destinationPort”: “80”, “protocol”: “http”, “http”: {“requestURI”: “/DIAL/apps/com.spotify.Spotify.TVv2”, “requestFullURI”: “http://192.168.1.3/DIAL/apps/com.spotify.Spotify.TVv2”, “requestVersion”: “HTTP/1.1”, “requestMethod”: “GET”, “userAgent”: “Spotify/109600181 OSX/0 (MacBookPro14,3)”, “clientHeaderOrder”: “connection,accept_encoding,host,user_agent”, “clientHeaderHash”: “598c34a2838e82f9ec3175305f233b89”}}
{“timestamp”: “2019-05-28T03:41:26.099574”, “sourceIp”: “13.237.44.5”, “destinationIp”: “192.168.1.10”, “sourcePort”: “22”, “destinationPort”: “59566”, “protocol”: “ssh”, “ssh”: {“server”: “SSH-2.0-babeld-80573d3e”, “hasshServer”: “3f0099d323fed5119bbfcca064478207”, “hasshServerAlgorithms”: “curve25519-sha256,curve25519-sha256@libssh.org,ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-group-exchange-sha256;chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr,aes256-cbc,aes192-cbc,aes128-cbc;hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-sha1-etm@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac-sha1;none,zlib,zlib@openssh.com”, “hasshVersion”: “1.0”, “skex”: “curve25519-sha256,curve25519-sha256@libssh.org,ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-group-exchange-sha256”, “seastc”: “chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr,aes256-cbc,aes192-cbc,aes128-cbc”, “smastc”: “hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-sha1-etm@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac-sha1”, “scastc”: “none,zlib,zlib@openssh.com”, “slcts”: “[Empty]”, “slstc”: “[Empty]”, “seacts”: “chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr,aes256-cbc,aes192-cbc,aes128-cbc”, “smacts”: “hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-sha1-etm@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac-sha1”, “scacts”: “none,zlib,zlib@openssh.com”, “sshka”: “ssh-dss,rsa-sha2-512,rsa-sha2-256,ssh-rsa”}}
{“timestamp”: “2019-05-28T03:41:26.106737”, “sourceIp”: “192.168.1.10”, “destinationIp”: “13.237.44.5”, “sourcePort”: “59566”, “destinationPort”: “22”, “protocol”: “ssh”, “ssh”: {“client”: “SSH-2.0-OpenSSH_7.9”, “hassh”: “ec7378c1a92f5a8dde7e8b7a1ddf33d1”, “hasshAlgorithms”: “curve25519-sha256,curve25519-sha256@libssh.org,ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-group-exchange-sha256,diffie-hellman-group16-sha512,diffie-hellman-group18-sha512,diffie-hellman-group14-sha256,diffie-hellman-group14-sha1,ext-info-c;chacha20-poly1305@openssh.com,aes128-ctr,aes192-ctr,aes256-ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com;umac-64-etm@openssh.com,umac-128-etm@openssh.com,hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-sha1-etm@openssh.com,umac-64@openssh.com,umac-128@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac-sha1;none,zlib@openssh.com,zlib”, “hasshVersion”: “1.0”, “ckex”: “curve25519-sha256,curve25519-sha256@libssh.org,ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,diffie-hellman-group-exchange-sha256,diffie-hellman-group16-sha512,diffie-hellman-group18-sha512,diffie-hellman-group14-sha256,diffie-hellman-group14-sha1,ext-info-c”, “ceacts”: “chacha20-poly1305@openssh.com,aes128-ctr,aes192-ctr,aes256-ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com”, “cmacts”: “umac-64-etm@openssh.com,umac-128-etm@openssh.com,hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-sha1-etm@openssh.com,umac-64@openssh.com,umac-128@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac-sha1”, “ccacts”: “none,zlib@openssh.com,zlib”, “clcts”: “[Empty]”, “clstc”: “[Empty]”, “ceastc”: “chacha20-poly1305@openssh.com,aes128-ctr,aes192-ctr,aes256-ctr,aes128-gcm@openssh.com,aes256-gcm@openssh.com”, “cmastc”: “umac-64-etm@openssh.com,umac-128-etm@openssh.com,hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,hmac-sha1-etm@openssh.com,umac-64@openssh.com,umac-128@openssh.com,hmac-sha2-256,hmac-sha2-512,hmac-sha1”, “ccastc”: “none,zlib@openssh.com,zlib”, “cshka”: “rsa-sha2-512-cert-v01@openssh.com,rsa-sha2-256-cert-v01@openssh.com,ssh-rsa-cert-v01@openssh.com,rsa-sha2-512,rsa-sha2-256,ssh-rsa,ecdsa-sha2-nistp256-cert-v01@openssh.com,ecdsa-sha2-nistp384-cert-v01@openssh.com,ecdsa-sha2-nistp521-cert-v01@openssh.com,ssh-ed25519-cert-v01@openssh.com,ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,ssh-ed25519”}}
{“timestamp”: “2019-05-28T03:41:36.762811”, “sourceIp”: “192.168.1.10”, “destinationIp”: “93.184.216.34”, “sourcePort”: “59584”, “destinationPort”: “443”, “protocol”: “tls”, “tls”: {“serverName”: “example.com”, “ja3”: “e6573e91e6eb777c0933c5b8f97f10cd”, “ja3Algorithms”: “771,49200-49196-49192-49188-49172-49162-159-107-57-52393-52392-52394-65413-196-136-129-157-61-53-192-132-49199-49195-49191-49187-49171-49161-158-103-51-190-69-156-60-47-186-65-49170-49160-22-10-255,0-11-10-13-16,29-23-24,0”, “ja3Version”: “771”, “ja3Ciphers”: “49200-49196-49192-49188-49172-49162-159-107-57-52393-52392-52394-65413-196-136-129-157-61-53-192-132-49199-49195-49191-49187-49171-49161-158-103-51-190-69-156-60-47-186-65-49170-49160-22-10-255”, “ja3Extensions”: “0-11-10-13-16”, “ja3Ec”: “29-23-24”, “ja3EcFmt”: “0”}}
{“timestamp”: “2019-05-28T03:41:36.920935”, “sourceIp”: “93.184.216.34”, “destinationIp”: “192.168.1.10”, “sourcePort”: “443”, “destinationPort”: “59584”, “protocol”: “tls”, “tls”: {“ja3s”: “ae53107a2e47ea20c72ac44821a728bf”, “ja3sAlgorithms”: “771,49199,65281-0-11-16”, “ja3sVersion”: “771”, “ja3sCiphers”: “49199”, “ja3sExtensions”: “65281-0-11-16”}}
{“timestamp”: “2019-05-28T03:41:37.487609”, “sourceIp”: “192.168.1.10”, “destinationIp”: “192.168.1.3”, “sourcePort”: “59588”, “destinationPort”: “80”, “protocol”: “http”, “http”: {“requestURI”: “/DIAL/apps/com.spotify.Spotify.TVv2”, “requestFullURI”: “http://192.168.1.3/DIAL/apps/com.spotify.Spotify.TVv2”, “requestVersion”: “HTTP/1.1”, “requestMethod”: “GET”, “userAgent”: “Spotify/109600181 OSX/0 (MacBookPro14,3)”, “clientHeaderOrder”: “connection,accept_encoding,host,user_agent”, “clientHeaderHash”: “598c34a2838e82f9ec3175305f233b89”}}
{“timestamp”: “2019-05-28T03:41:48.700730”, “sourceIp”: “192.168.1.10”, “destinationIp”: “216.58.196.142”, “sourcePort”: “59601”, “destinationPort”: “80”, “protocol”: “http”, “http”: {“requestURI”: “/”, “requestFullURI”: “http://google.com/”, “requestVersion”: “HTTP/1.1”, “requestMethod”: “GET”, “userAgent”: “curl/7.54.0”, “clientHeaderOrder”: “host,user_agent,accept”, “clientHeaderHash”: “d6662c018cd4169689ddf7c6c0f8ca1b”}}
{“timestamp”: “2019-05-28T03:41:48.805393”, “sourceIp”: “216.58.196.142”, “destinationIp”: “192.168.1.10”, “sourcePort”: “80”, “destinationPort”: “59601”, “protocol”: “http”, “http”: {“server”: “gws”, “serverHeaderOrder”: “location,content_type,date,cache_control,server,content_length”, “serverHeaderHash”: “c5241aca9a7c86f06f476592f5dda9a1”}}
{“timestamp”: “2019-05-28T03:41:58.038530”, “sourceIp”: “192.168.1.10”, “destinationIp”: “216.58.203.99”, “sourcePort”: “54387”, “destinationPort”: “443”, “protocol”: “gquic”, “gquic”: {“tagNumber”: “25”, “sni”: “clientservices.googleapis.com”, “uaid”: “Chrome/74.0.3729.169 Intel Mac OS X 10_14_5”, “ver”: “Q043”, “aead”: “AESG”, “smhl”: “1”, “mids”: “100”, “kexs”: “C255”, “xlct”: “cd9baccc808a6d3b”, “copt”: “NSTP”, “ccrt”: “cd9baccc808a6d3b67f8adc58015e3ff”, “stk”: “d6a64aeb563a19fe091bc34e8c038b0a3a884c5db7caae071180c5b739bca3dd7c42e861386718982fbe6db9d1cb136f799e8d10fd5a”, “pdmd”: “X509”, “ccs”: “01e8816092921ae8”, “scid”: “376976b980c73b669fea57104fb725c6”}}
Let’s have a look at the captured traffic of Metasploit auxiliary scanner for the recent CVE-2019-0708 RDP vulnerability (BlueKeep).
$ python3 fatt.py -r RDP/cve-2019-0708_metasploit_aux.pcap -p -j; cat fatt.log | python -m json.tool
192.168.1.10:39079 -> 192.168.1.20:3389 [RDP] rdfp=525e1cb209280b81c24f1668dd55ed94 cookie=”mstshash=user0″ req_protocols=0x00000000
{
“destinationIp”: “192.168.1.20”,
“destinationPort”: “3389”,
“protocol”: “rdp”,
“rdp”: {
“channelDefArray”: {
“0”: {
“name”: “cliprdr”,
“options”: “c0a00000”
},
“1”: {
“name”: “MS_T120”,
“options”: “80800000”
},
“2”: {
“name”: “rdpsnd”,
“options”: “c0000000”
},
“3”: {
“name”: “snddbg”,
“options”: “c0000000”
},
“4”: {
“name”: “rdpdr”,
“options”: “80800000”
}
},
“clientBuild”: “2600”,
“clientDigProductId”: “00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000”,
“clientName”: “x1810”,
“clientProductId”: “1”,
“clusterFlags”: “09000000”,
“colorDepth”: “0x0000ca01”,
“connectionType”: “0”,
“cookie”: “mstshash=user0”,
“desktopHeight”: “600”,
“desktopWidth”: “800”,
“earlyCapabilityFlags”: “1”,
“encryptionMethods”: “03000000”,
“extEncMethods”: “00000000”,
“highColorDepth”: “0x00000018”,
“keyboardFuncKey”: “12”,
“keyboardLayout”: “1033”,
“keyboardSubtype”: “0”,
“keyboardType”: “4”,
“pad1Octet”: “00”,
“postbeta2ColorDepth”: “0x0000ca01”,
“rdfp”: “3ba3d115055e593e3550575a36e68153”,
“rdfpAlgorithms”: “4,8,09000000,03000000,00000000,cliprdr:c0a00000-MS_T120:80800000-rdpsnd:c0000000-snddbg:c0000000-rdpdr:80800000”,
“rdfpVersion”: “0.3”,
“requestedProtocols”: “0x00000000”,
“sasSequence”: “43523”,
“serialNumber”: “0”,
“supportedColorDepths”: “0x00000007”,
“verMajor”: “4”,
“verMinor”: “8”
},
“sourceIp”: “192.168.1.10”,
“sourcePort”: “39079”,
“timestamp”: “2019-05-23T03:51:25.438445”
}
Let’s test it with another CVE-2019-0708 PoC:
$ python3 fatt.py -r RDP/cve-2019-0708_poc.pcap -p -j; cat fatt.log | python -m json.tool
192.168.1.10:54303 -> 192.168.1.20:3389 [RDP] req_protocols=0x00000001
{
“destinationIp”: “192.168.1.20”,
“destinationPort”: “3389”,
“protocol”: “rdp”,
“rdp”: {
“requestedProtocols”: “0x00000001”
},
“sourceIp”: “192.168.1.10”,
“sourcePort”: “54303”,
“timestamp”: “2019-05-23T18:41:42.572758”
}
This time we don’t see the RDP ClientInfo message because the PoC uses TLS (not the standard RDP security protocol). So we can just see the Negotiation Request
messages, but if you decode the packet as TLS, you can see the TLS clientHello and JA3 fingerprint. Here’s how you can decode a specific port as another protocol:
$ python3 fatt.py -r RDP//cve-2019-0708_poc.pcap -p -j –decode_as ‘{“tcp.port==3389”: “tls”}’
192.168.1.10:50026 -> 192.168.1.20:3389 [TLS] ja3=67e3d18fd9dddbbc8eca65f7dedac674 serverName=192.168.1.20
192.168.1.20:3389 -> 192.168.1.10:50026 [TLS] ja3s=649d6810e8392f63dc311eecb6b7098b
$ cat fatt.log
{“timestamp”: “2019-05-23T17:21:56.056200”, “sourceIp”: “192.168.1.10”, “destinationIp”: “192.168.1.20”, “sourcePort”: “50026”, “destinationPort”: “3389”, “protocol”: “tls”, “tls”: {“serverName”: “192.168.1.20”, “ja3”: “67e3d18fd9dddbbc8eca65f7dedac674”, “ja3Algorithms”: “771,49196-49195-49200-49199-159-158-49188-49187-49192-49191-49162-49161-49172-49171-57-51-157-156-61-60-53-47-10-106-64-56-50-19-5-4,0-5-10-11-13-35-23-65281,29-23-24,0”, “ja3Version”: “771”, “ja3Ciphers”: “49196-49195-49200-49199-159-158-49188-49187-49192-49191-49162-49161-49172-49171-57-51-157-156-61-60-53-47-10-106-64-56-50-19-5-4”, “ja3Extensions”: “0-5-10-11-13-35-23-65281”, “ja3Ec”: “29-23-24”, “ja3EcFmt”: “0”}}
{“timestamp”: “2019-05-23T17:21:56.059333”, “sourceIp”: “192.168.1.20”, “destinationIp”: “192.168.1.10”, “sourcePort”: “3389”, “destinationPort”: “50026”, “protocol”: “tls”, “tls”: {“ja3s”: “649d6810e8392f63dc311eecb6b7098b”, “ja3sAlgorithms”: “771,49192,23-65281”, “ja3sVersion”: “771”, “ja3sCiphers”: “49192”, “ja3sExtensions”: “23-65281”}}
Prompt injection is a type of security vulnerability that can be exploited to control the…
Firefly is an advanced black-box fuzzer and not just a standard asset discovery tool. Firefly…
Winit is a robust, cross-platform library designed for creating and managing windows in Rust applications.…
In today’s digital age, convenience often comes at the cost of security. One such overlooked…
Terminal GPT (tgpt) offers a seamless way to bring the power of ChatGPT 3.5 directly…
garak checks if an LLM can be made to fail in a way we don't…