Lateral movement analyzer (LATMA) collects authentication logs from the domain and searches for potential lateral movement attacks and suspicious activity. The tool visualizes the findings with diagrams depicting the lateral movement patterns. This tool contains two modules, one that collects the logs and one that analyzes them. You can execute each of the modules separately, the event log collector should be executed in a Windows machine in an active directory domain environment with python 3.8 or above. The analyzer can be executed in a linux machine and a Windows machine.
The Event Log Collector module scans domain controllers for successful NTLM authentication logs and endpoints for successful Kerberos authentication logs. It requires LDAP/S port 389 and 636 and RPC port 135 access to the domain controller and clients. In addition it requires domain admin privileges or a user in the Event log Reader group or one with equivalent permissions. This is required to pull event logs from all endpoints and domain controllers.
The collector gathers NTLM logs from event 8004 on the domain controllers and Kerberos logs from event 4648 on the clients. It generates as an output a csv comma delimited format file with all the available authentication traffic. The output contains the fields source host, destination, username, auth type, SPN and timestamps in the format %Y/%m/%d %H:%M. The collector requires credential of a valid user with event viewer privileges across the environment and queries the specific logs for each protocol.
The Analyzer receives as input a spreadsheet with authentication data formatted as specified in Collector’s output structure. It searches for suspicious activity with the lateral movement analyzer algorithm and also detects additional IoCs of lateral movement. The authentication source and destination should be formalized with netbios name and not ip addresses.
LATMA gets a batch of authentication requests and sends an alert when it finds suspicious lateral movement attacks. We define the following:
LATMA performs several actions during its execution:
Adding an authentication to the graph might trigger a process of alerting. In general, a new edge can create a new alert, join an existing alert or merge two alerts.
Every authentication request monitored by LATMA is used for learning and stored in a dedicated data structure. First, we identify sinks and hubs. We define sinks as machines accessed by many (at least 50) different accounts, such as a company portal or exchange server. We define hubs as machines many different accounts (at least 20) authenticate from, such as proxies and VPNs. Authentications to sinks or from hubs are considered benign and are therefore removed from the authentication graph.
In addition to basic classification, LATMA matches between accounts and machines they frequently authenticate from. If an account authenticates from a machine at least three different days in a three weeks’ period, it means that this account matches the machine and any authentication of this account from the machine is considered benign and removed from the authentication graph.
The lateral movement IoCs are:
White cane - User accounts authenticating from a single machine to multiple ones in a relatively short time.
Bridge – User account X authenticating from machine A to machine B and following that, from machine B to machine C. This IoC potentially indicates an attacker performing actual advance from its initial foothold (A) to destination machine that better serves the attack’s objectives.
Switched Bridge – User account X authenticating from machine A to machine B, followed by user account Y authenticating from machine B to machine C. This IoC potentially indicates an attacker that discovers and compromises an additional account along its path and uses the new account to advance forward (a common example is account X being a standard domain user and account Y being a admin user)
Weight Shift – White cane (see above) from machine A to machines {B1,…, Bn}, followed by another White cane from machine Bx to machines {C1,…,Cn}. This IoC potentially indicates an attacker that has determined that machine B would better serve the attack’s purposes from now on uses machine B as the source for additional searches.
Blast – User account X authenticating from machine A to multiple machines in a very short timeframe. A common example is an attacker that plants \ executes ransomware on a mass number of machines simultaneously
Output:
The analyzer outputs several different files
usage
The Collector
Required arguments:
Binary Usage Open command prompt and navigate to the binary folder. Run executables with the specified above arguments.
In the example files you have several samples of real environments (some contain lateral movement attacks and some don’t) which you can give as input for the analyzer.
Usage example
bomber is an application that scans SBOMs for security vulnerabilities. So you've asked a vendor…
Embed a payload within a PNG file by splitting the payload across multiple IDAT sections.…
Exploit-Street, where we dive into the ever-evolving world of cybersecurity with a focus on Local…
Shadow Dumper is a powerful tool used to dump LSASS (Local Security Authority Subsystem Service)…
shadow-rs is a Windows kernel rootkit written in Rust, demonstrating advanced techniques for kernel manipulation…
Extract and execute a PE embedded within a PNG file using an LNK file. The…