Qdrant (read: quadrant) is a vector similarity search engine and vector database.
It provides a production-ready service with a convenient API to store, search, and manage points—vectors with an additional payload Qdrant is tailored to extended filtering support.
It makes it useful for all sorts of neural-network or semantic-based matching, faceted search, and other applications.
Qdrant is written in Rust, which makes it fast and reliable even under high load. See benchmarks.
With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more!
pip install qdrant-client
The python client offers a convenient way to start with Qdrant locally:
from qdrant_client import QdrantClient
qdrant = QdrantClient(":memory:") # Create in-memory Qdrant instance, for testing, CI/CD
# OR
client = QdrantClient(path="path/to/db") # Persists changes to disk, fast prototyping
To experience the full power of Qdrant locally, run the container with this command:
docker run -p 6333:6333 qdrant/qdrant
Now you can connect to this with any client, including Python:
qdrant = QdrantClient("http://localhost:6333") # Connect to existing Qdrant instance
For more information click here.
Before delving into the topic, let's first clarify the role of an Administrator within the…
Embassy is the next-generation framework for embedded applications. Write safe, correct and energy-efficient embedded code…
This repository provides a mapping of Atomic Red Team attack simulations to open-source detection rules,…
ShadowHound is a set of PowerShell scripts for Active Directory enumeration without the need for…
EDR bypass technology is not just for attackers. Many malware now have EDR bypass capabilities,…
Welcome to Better-Sliver, a fork of the Sliver project. This fork is intended to be…