OpenTelemetry Rust is an implementation of the OpenTelemetry framework tailored for the Rust programming language.
It provides tools, APIs, and SDKs to instrument applications, enabling the generation, collection, and export of telemetry data such as metrics, logs, and traces.
This data is crucial for understanding software performance and behavior, particularly in distributed systems.
Key Features And Components
- Instrumentation and APIs:
- The
opentelemetry
crate serves as the core API for instrumenting Rust applications. It supports tracing, metrics, logging, context propagation, and baggage management. - The
opentelemetry-sdk
crate provides SDK implementations for tracing, metrics, and logging.
- Exporters:
- OpenTelemetry Rust supports exporting telemetry data to various backends via specific crates:
opentelemetry-otlp
: Exports data using the OpenTelemetry Protocol (OTLP).opentelemetry-prometheus
: Exports metrics to Prometheus.opentelemetry-zipkin
andopentelemetry-jaeger
: Export traces to Zipkin and Jaeger respectively.opentelemetry-stdout
: Outputs telemetry data to the console for debugging.
- Logging Integration:
- OpenTelemetry Rust bridges existing logging libraries with its log data model using appenders such as
opentelemetry-appender-log
(for thelog
crate) andopentelemetry-appender-tracing
(for thetracing
crate).
- Semantic Conventions:
- The
opentelemetry-semantic-conventions
crate ensures adherence to standard naming conventions for telemetry attributes.
- Supported Backends:
- OpenTelemetry is vendor-neutral and integrates seamlessly with observability tools like Jaeger, Prometheus, AWS X-Ray, SigNoz, and others.
To begin using OpenTelemetry in Rust:
- Add the necessary crates (
opentelemetry
,opentelemetry-sdk
, etc.) to your project. - Initialize a tracer or meter in your application’s main function.
- Instrument your code by creating spans (for traces) or recording metrics.
- Configure an exporter to send telemetry data to your chosen backend.
For example:
use opentelemetry::sdk::trace::TracerProvider;
use opentelemetry_otlp::WithExportConfig;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let tracer = opentelemetry_otlp::new_exporter()
.tonic()
.with_endpoint("http://localhost:4317")
.build_span_exporter()?;
let provider = TracerProvider::builder().with_simple_exporter(tracer).build();
opentelemetry::global::set_tracer_provider(provider);
Ok(())
}
This setup enables developers to monitor application performance effectively while maintaining flexibility in backend selection.