kani is a lightweight and highly hackable framework for chat-based language models with tool usage/function calling.
Compared to other LM frameworks, kani is less opinionated and offers more fine-grained customizability over the parts of the control flow that matter, making it the perfect choice for NLP researchers, hobbyists, and developers alike.
kani comes with support for the following models out of the box, with a model-agnostic framework to add support for many more:
Interested in contributing? Check out our guide.
kani requires Python 3.10 or above.
First, install the library. In this quickstart, we’ll use the OpenAI engine, though kani is model-agnostic.
$ pip install "kani[openai]"
Then, let’s use kani to create a simple chatbot using ChatGPT as a backend.
# import the library
from kani import Kani, chat_in_terminal
from kani.engines.openai import OpenAIEngine
# Replace this with your OpenAI API key: https://platform.openai.com/account/api-keys
api_key = "sk-..."
# kani uses an Engine to interact with the language model. You can specify other model
# parameters here, like temperature=0.7.
engine = OpenAIEngine(api_key, model="gpt-3.5-turbo")
# The kani manages the chat state, prompting, and function calling. Here, we only give
# it the engine to call ChatGPT, but you can specify other parameters like
# system_prompt="You are..." here.
ai = Kani(engine)
# kani comes with a utility to interact with a kani through your terminal! Check out
# the docs for how to use kani programmatically.
chat_in_terminal(ai)
kani makes the time to set up a working chat model short, while offering the programmer deep customizability over every prompt, function call, and even the underlying language model.
For more information click here.
Cybersecurity tools play a critical role in safeguarding digital assets, systems, and networks from malicious…
MODeflattener is a specialized tool designed to reverse OLLVM's control flow flattening obfuscation through static…
"My Awesome List" is a curated collection of tools, libraries, and resources spanning various domains…
CVE-2018-17463, a type confusion vulnerability in Chrome’s V8 JavaScript engine, allowed attackers to execute arbitrary…
The blog post "Chrome Browser Exploitation, Part 1: Introduction to V8 and JavaScript Internals" provides…
The exploitation of CVE-2018-17463, a type confusion vulnerability in Chrome’s V8 JavaScript engine, relies on…