Kali Linux

NimHollow : Nim Implementation Of Process Hollowing Using Syscalls (PoC)

NimHollow is a Nim Implementation Of Process Hollowing Using Syscalls (PoC). Playing around with the Process Hollowing technique using Nim.

Features

  • Direct syscalls for triggering Windows Native API functions with NimlineWhispers or NimlineWhispers2.
  • Shellcode encryption/decryption with AES in CTR mode.
  • Simple sandbox detection methods from the OSEP course by @offensive-security.

DISCLAIMER. All information contained in this repository is provided for educational and research purposes only. The author is not responsible for any illegal use of this tool.

Usage

Installation

~$ git clone –recurse-submodules https://github.com/snovvcrash/NimHollow && cd NimHollow
~$ git submodule update –init –recursive
~$ nimble install winim nimcrypto
~$ pip3 install -r requirements.txt
~$ sudo apt install upx -y

Example

~$ msfvenom -p windows/x64/messagebox TITLE=’MSF’ TEXT=’Hack the Planet!’ EXITFUNC=thread -f raw -o shellcode.bin
~$ python3 NimHollow.py shellcode.bin -i ‘C:\Windows\System32\svchost.exe’ -o injector –upx –rm [–whispers2]
~$ file injector.exe
injector.exe: PE32+ executable (console) x86-64 (stripped to external PDB), for MS Windows

Help

usage: NimHollow.py [-h] [-i IMAGE] [-o OUTPUT] [–whispers2] [–debug] [–upx] [–rm] shellcode_bin
positional arguments:
shellcode_bin path to the raw shellcode file
optional arguments:
-h, –help show this help message and exit
-i IMAGE, –image IMAGE
process image to hollow (default “C:\Windows\System32\svchost.exe”)
-o OUTPUT, –output OUTPUT
output filename
–whispers2 use NimlineWhispers2 to generate syscalls.nim
–debug do not strip debug messages from Nim binary
–upx compress Nim binary with upx
–rm remove Nim files after compiling the binary

Process Hollowing In Slides

1. Create the target process (e.g., svchost.exe) in a suspended state.

2. Query created process to extract its base address pointer from PEB (Process Environment Block).

3. Read 8 bytes of memory (for 64-bit architecture) pointed by the image base address pointer in order to get the actual value of the image base address.

4. Read 0x200 bytes of the loaded EXE image and parse PE structure to get the EntryPoint address.

 5. Write the shellcode to the EntryPoint address and resume thread execution.

R K

Recent Posts

Kali Linux 2024.4 Released, What’s New?

Kali Linux 2024.4, the final release of 2024, brings a wide range of updates and…

13 hours ago

Lifetime-Amsi-EtwPatch : Disabling PowerShell’s AMSI And ETW Protections

This Go program applies a lifetime patch to PowerShell to disable ETW (Event Tracing for…

14 hours ago

GPOHunter – Active Directory Group Policy Security Analyzer

GPOHunter is a comprehensive tool designed to analyze and identify security misconfigurations in Active Directory…

3 days ago

2024 MITRE ATT&CK Evaluation Results – Cynet Became a Leader With 100% Detection & Protection

Across small-to-medium enterprises (SMEs) and managed service providers (MSPs), the top priority for cybersecurity leaders…

5 days ago

SecHub : Streamlining Security Across Software Development Lifecycles

The free and open-source security platform SecHub, provides a central API to test software with…

1 week ago

Hawker : The Comprehensive OSINT Toolkit For Cybersecurity Professionals

Don't worry if there are any bugs in the tool, we will try to fix…

1 week ago