Polars is a cutting-edge DataFrame library designed for high-speed data manipulation and analysis.
Written in Rust and leveraging the Apache Arrow columnar format, Polars provides a robust, multi-threaded, and memory-efficient solution for handling both small and large datasets.
It supports multiple programming languages, including Python, Rust, Node.js, R, and SQL.
In Python, you can quickly create a DataFrame and perform complex operations:
import polars as pl
df = pl.DataFrame({
"A": [1, 2, 3],
"B": [4, 5, 6],
"C": ["apple", "banana", "cherry"]
})
result = df.select(
pl.col("A").sum().alias("sum_A"),
pl.col("C").sort_by("A").alias("sorted_C")
)
print(result)
Polars also supports SQL queries directly on DataFrames or via its CLI for terminal-based operations.
Polars can be installed via pip
:
pip install polars
Optional dependencies can be added for extended functionality:
`bash pip install 'polars[all]'
Pystinger is a Python-based tool that enables SOCKS4 proxying and port mapping through webshells. It…
Introduction When it comes to cybersecurity, speed and privacy are critical. Public vulnerability databases like…
Introduction When it comes to cybersecurity, speed and privacy are critical. Public vulnerability databases like…
If you are working with Linux or writing bash scripts, one of the most common…
What is a bash case statement? A bash case statement is a way to control…
Why Do We Check Files in Bash? When writing a Bash script, you often work…