Polars is a cutting-edge DataFrame library designed for high-speed data manipulation and analysis.
Written in Rust and leveraging the Apache Arrow columnar format, Polars provides a robust, multi-threaded, and memory-efficient solution for handling both small and large datasets.
It supports multiple programming languages, including Python, Rust, Node.js, R, and SQL.
In Python, you can quickly create a DataFrame and perform complex operations:
import polars as pl
df = pl.DataFrame({
"A": [1, 2, 3],
"B": [4, 5, 6],
"C": ["apple", "banana", "cherry"]
})
result = df.select(
pl.col("A").sum().alias("sum_A"),
pl.col("C").sort_by("A").alias("sorted_C")
)
print(result)
Polars also supports SQL queries directly on DataFrames or via its CLI for terminal-based operations.
Polars can be installed via pip
:
pip install polars
Optional dependencies can be added for extended functionality:
`bash pip install 'polars[all]'
Playwright-MCP (Model Context Protocol) is a cutting-edge tool designed to bridge the gap between AI…
JBDev is a specialized development tool designed to streamline the creation and debugging of jailbreak…
The Kereva LLM Code Scanner is an innovative static analysis tool tailored for Python applications…
Nuclei-Templates-Labs is a dynamic and comprehensive repository designed for security researchers, learners, and organizations to…
SSH-Stealer and RunAs-Stealer are malicious tools designed to stealthily harvest SSH credentials, enabling attackers to…
Control flow flattening is a common obfuscation technique used by OLLVM (Obfuscator-LLVM) to transform executable…