Ruse : Mobile Camera-Based Application That Attempts To Alter Photos To Preserve Their Utility To Humans While Making Them Unusable For Facial Recognition Systems

Ruse is a mobile camera-based application that attempts to alter photos to preserve their utility to humans while making them unusable for facial recognition systems.

Installation

  • Easy Method: Wait and download app from appropriate app store.
  • Download and run ios app via XCode (see Development setup for more detail)

Usage Example

App is developed as a camera-based app, allowing for the modification of faces on new camera capture or current photos on camera roll with the goal of keeping them useful for social media and human consumption while making it difficult for facial recognition systems to utilize them accurately and effectively.

This is done through a variety of methods based on previous research. Due to the limits of mobile and TensorFlow Lite, learning on the device itself is not possible—so some of the more advanced techniques are not yet possible (but research and development may yield future results.)

Instructions on usage and a full video to come with first release.

The Jupyter notebook illustrates the “arbitrary fast style” adversarial technique that is possible on mobile: 

In the long term, this technique will be applied selectively (likey to segments of the photographs), along with perlin/simplex noise generated on a per image basis, a la https://github.com/kieranbrowne/camera-adversaria.

A variety of methods are used to conceal the faces from commerical recognition systems (e.g. arbitrary file transfer, perlin noise introduction). Before saving to the camera roll or being used for online purposes, an onboard facility checks to see if faces can be detected.

The effect of these adversarial approaches may then be checked wihtout needing to have network access.

(Future versions plan on including a similar onboard estimation of how a sample recognition system fairs against the modified image (classification as opposed to merely detection.))

Development Setup

Requirements: Xcode 12

Pods installed as part of the process below: TensorFlow Lite (Swift nightly build) // GoogleMLKit // GPUImage3

  • Download ios and model (tflite models) directory
  • run “pod install” in the downloaded directory
  • Open Ruse.xcworkspace

Installation to device is left as an excercise for the reader.

R K

Recent Posts

Kali Linux 2024.4 Released, What’s New?

Kali Linux 2024.4, the final release of 2024, brings a wide range of updates and…

7 hours ago

Lifetime-Amsi-EtwPatch : Disabling PowerShell’s AMSI And ETW Protections

This Go program applies a lifetime patch to PowerShell to disable ETW (Event Tracing for…

7 hours ago

GPOHunter – Active Directory Group Policy Security Analyzer

GPOHunter is a comprehensive tool designed to analyze and identify security misconfigurations in Active Directory…

2 days ago

2024 MITRE ATT&CK Evaluation Results – Cynet Became a Leader With 100% Detection & Protection

Across small-to-medium enterprises (SMEs) and managed service providers (MSPs), the top priority for cybersecurity leaders…

5 days ago

SecHub : Streamlining Security Across Software Development Lifecycles

The free and open-source security platform SecHub, provides a central API to test software with…

1 week ago

Hawker : The Comprehensive OSINT Toolkit For Cybersecurity Professionals

Don't worry if there are any bugs in the tool, we will try to fix…

1 week ago