Applications

SAND : Decoupling Sanitization From Fuzzing For Low Overhead

SAND is a novel tool designed to enhance the efficiency of software fuzzing by decoupling sanitization from the fuzzing process.

Fuzzing, a widely used software testing technique, often suffers from overhead caused by sanitizer instrumentation.

SAND addresses this issue by separating the sanitization and fuzzing workflows, allowing for low-overhead and high-performance testing.

Core Functionality

SAND operates by utilizing two separate binaries during its workflow:

  1. Native Binary (Non-Sanitized): This binary is built without any sanitizer instrumentation and is used by SAND to collect coverage data during each fuzzing loop.
  2. Sanitizer Instrumented Binary (Without AFL Instrumentation): This binary includes sanitization but excludes AFL instrumentation. It is used to verify whether interesting inputs trigger sanitizer checks.

By decoupling these processes, SAND reduces the runtime overhead typically associated with sanitizer-enabled fuzzing, while still ensuring comprehensive error detection.

  • sand Branch: Contains the reference implementation used in the paper’s evaluation, forked from AFL++ version 4.05c.
  • upstream Branch: Represents efforts to port SAND to the latest version of AFL++.

To use SAND:

  1. Build the native binary using afl-clang-fast.
  2. Build the sanitizer instrumented binary with AFL_SAN_NO_INST=1 and AFL_USE_ASAN=1.
  3. Run SAND with the following command:
   AFL_NO_UI=1 AFL_SKIP_CPUFREQ=1 afl-fuzz -i <input_dir> -o <output_dir> -a <sanitized_binary> -- <native_binary> -f @@

SAND can be built using Docker for ease of reproduction:

docker build -t sand .

Alternatively, users can follow instructions in the original AFL++ README if Docker is unavailable.

For evaluation reproduction, detailed instructions are provided in the evaluation folder of the repository.

SAND’s approach is simple and adaptable to other fuzzers. For example, it has been applied to Fuzzilli, demonstrating its versatility. SAND represents a significant improvement in fuzzing efficiency by decoupling sanitization from fuzzing.

Its low-overhead design ensures faster execution while maintaining robust error detection capabilities, making it a valuable tool for software testing and security research.

Varshini

Varshini is a Cyber Security expert in Threat Analysis, Vulnerability Assessment, and Research. Passionate about staying ahead of emerging Threats and Technologies.

Recent Posts

Playwright-MCP : A Powerful Tool For Browser Automation

Playwright-MCP (Model Context Protocol) is a cutting-edge tool designed to bridge the gap between AI…

46 minutes ago

JBDev : A Tool For Jailbreak And TrollStore Development

JBDev is a specialized development tool designed to streamline the creation and debugging of jailbreak…

21 hours ago

Kereva LLM Code Scanner : A Revolutionary Tool For Python Applications Using LLMs

The Kereva LLM Code Scanner is an innovative static analysis tool tailored for Python applications…

23 hours ago

Nuclei-Templates-Labs : A Hands-On Security Testing Playground

Nuclei-Templates-Labs is a dynamic and comprehensive repository designed for security researchers, learners, and organizations to…

1 day ago

SSH-Stealer : The Stealthy Threat Of Advanced Credential Theft

SSH-Stealer and RunAs-Stealer are malicious tools designed to stealthily harvest SSH credentials, enabling attackers to…

1 day ago

ollvm-unflattener : A Tool For Reversing Control Flow Flattening In OLLVM

Control flow flattening is a common obfuscation technique used by OLLVM (Obfuscator-LLVM) to transform executable…

1 day ago