Secure Socket Funneling (SSF) is a network tool and toolkit. It provides simple and efficient ways to forward data from multiple sockets (TCP or UDP) through a single secure TLS tunnel to a remote computer.
It is cross platform (Windows, Linux, OSX) and comes as standalone executables.
Features
How to use?
Command line
Client
Usage: ssf[.exe] [options] server_address
Options:
-v verbose_level
: Verbosity: critical|error|warning|info|debug|trace (default: info) -q
: Quiet mode. Do not print logs -p port
: Remote port (default: 8011) -c config_file_path
: Specify configuration file. If not set, ‘config.json’ is loaded from the current working directory -m attempts
: Max unsuccessful connection attempts before stopping (default: 1) -t delay
: Time to wait before attempting to reconnect in seconds (default: 60) -n
: Do not try to reconnect client if connection is interrupted -g
: Allow gateway ports. Allow client to bind local sockets for a service to a specific address rather than “localhost” -S
: Display microservices status (on/off) Services options:
-D [[bind_address]:]port
: Run a SOCKS proxy on the server accessible on [[bind_address]:]port
on the local side -F [[bind_address]:]port
: Run a SOCKS proxy on the local host accessible from the server on [[bind_address]:]port
-X [[bind_address]:]port
: Forward server shell I/O to the specified port on the local side. Each connection creates a new shell process -Y [[bind_address]:]port
: Forward local shell I/O to the specified port on the server -L [[bind_address]:]port:host:hostport
: Forward TCP connections to [[bind_address]:]port
on the local host to host:hostport
on the server -R [[bind_address]:]port:host:hostport
: Forward TCP connections to [[bind_address]:]port
on the server to host:hostport
on the local side -U [[bind_address]:]port:host:hostport
: Forward local UDP traffic on [[bind_address]:]port
to host:hostport
on the server -V [[bind_address]:]port:host:hostport
: Forward UDP traffic on [[bind_address]:]port
on the server to host:hostport
on the local side Server
Usage: ssfd[.exe] [options]
Options:
-v verbose_level
: Verbosity: critical|error|warning|info|debug|trace (default: info) -q
: Quiet mode. Do not print logs -c config_file_path
: Specify configuration file. If not set, ‘config.json’ is loaded from the current working directory -p port
: Local port (default: 8011) -R
: The server will only relay connections -l host
: Set server bind address -g
: Allow gateway ports. Allow client to bind local sockets for a service to a specific address rather than “localhost” -S
: Display microservices status (on/off) The copy feature must be enabled on both client and server configuration file:
{
“ssf”: {
“services”: {
“copy”: { “enable”: true }
}
}
}
Usage: ssfcp[.exe] [options] [host@]/absolute/path/file [[host@]/absolute/path/file]
Options:
-v verbose_level
: Verbosity: critical|error|warning|info|debug|trace (default: info) -q
: Quiet mode. Do not print logs -c config_file_path
: Specify configuration file. If not set, ‘config.json’ is loaded from the current working directory -p port
: Remote port (default: 8011) -t
: Use stdin as input --resume
: Attempt to resume file transfer if the destination file exists --check-integrity
: Check file integrity at the end of the transfer -r
: Copy files recursively --max-transfers arg
: Max transfers in parallel (default: 1) Also Read – Dnssearch : A Subdomain Enumeration Tool
Examples
Client
The client will run a SOCKS proxy on port 9000 and transfer connection requests to the server 192.168.0.1:8000
ssf -D 9000 -c config.json -p 8000 192.168.0.1
The server will be bound to port 8011 on all the network interfaces
ssfd
The server will be bound to 192.168.0.1:9000
ssfd -p 9000 -l 192.168.0.1
ssfcp [-c config_file] [-p port] path/to/file host@absolute/path/directory_destination
ssfcp [-c config_file] [-p port] path/to/file* host@absolute/path/directory_destination
ssfcp [-c config_file] [-p port] -r path/to/dir host@absolute/path/directory_destination
data_in_stdin | ssfcp [-c config_file] [-p port] -t host@path/to/destination/file_destination
ssfcp [-c config_file] [-p port] remote_host@path/to/file absolute/path/directory_destination
ssfcp [-c config_file] [-p port] remote_host@path/to/file* absolute/path/directory_destination
ssfcp [-c config_file] [-p port] -r remote_host@path/to/dir absolute/path/directory_destination
Configuration file
{
“ssf”: {
“arguments”: “”,
“circuit”: [],
“http_proxy”: {
“host”: “”,
“port”: “”,
“user_agent”: “”,
“credentials”: {
“username”: “”,
“password”: “”,
“domain”: “”,
“reuse_ntlm”: true,
“reuse_nego”: true
}
},
“socks_proxy”: {
“version”: 5,
“host”: “”,
“port”: “1080”
},
“tls” : {
“ca_cert_path”: “./certs/trusted/ca.crt”,
“cert_path”: “./certs/certificate.crt”,
“key_path”: “./certs/private.key”,
“key_password”: “”,
“dh_path”: “./certs/dh4096.pem”,
“cipher_alg”: “DHE-RSA-AES256-GCM-SHA384”
},
“services”: {
“datagram_forwarder”: { “enable”: true },
“datagram_listener”: {
“enable”: true,
“gateway_ports”: false
},
“stream_forwarder”: { “enable”: true },
“stream_listener”: {
“enable”: true,
“gateway_ports”: false
},
“copy”: { “enable”: false },
“shell”: {
“enable”: false,
“path”: “/bin/bash|C:\windows\system32\cmd.exe”,
“args”: “”
},
“socks”: { “enable”: true }
}
}
}
Arguments
Configuration key | Description |
---|---|
arguments | use configuration arguments instead of given CLI arguments (except -c ) |
The arguments
key lets the user customize the command line arguments in the configuration file. This feature is a convenient way to save different client connection profiles.
Given the following configuration file conf.json
:
{
“ssf”: {
“arguments”: “10.0.0.1 -p 443 -D 9000 -L 11000:localhost:12000 -v debug”
}
}
SSF will extract the given arguments and use them as a replacement of the initial arguments (except -c
).
For example, ssf -c conf.json
will be equivalent to ssf 10.0.0.1 -p 443 -D 9000 -L 11000:localhost:12000 -v debug
:
10.0.0.1:443
(10.0.0.1 -p 443
)-D 9000
)-L 11000:localhost:12000
)-v debug
)Circuit
Configuration key | Description |
---|---|
circuit | relay chain servers used to establish the connection to the remote server |
The circuit is a JSON array containing the bounce servers and ports which will be used to establish the connection. They are listed as follow:
{
“ssf”: {
“circuit”: [
{“host”: “SERVER1”, “port”:”PORT1″},
{“host”: “SERVER2”, “port”:”PORT2″},
{“host”: “SERVER3”, “port”:”PORT3″}
]
}
}
This configuration will create the following connection chain:
CLIENT -> SERVER1:PORT1 -> SERVER2:PORT2 -> SERVER3:PORT3 -> TARGET
Proxy
SSF supports connection through:
CONNECT
HTTP methodHTTP Proxy
Configuration key | Description |
---|---|
http_proxy.host | HTTP proxy host |
http_proxy.port | HTTP proxy port |
http_proxy.user_agent | User-Agent header value in HTTP CONNECT request |
http_proxy.credentials.username | proxy username credentials (all platform: Basic or Digest, Windows: NTLM and Negotiate if reuse = false) |
http_proxy.credentials.password | proxy password credentials (all platform: Basic or Digest, Windows: NTLM and Negotiate if reuse = false) |
http_proxy.credentials.domain | user domain (NTLM and Negotiate auth on Windows only) |
http_proxy.credentials.reuse_ntlm | reuse current computer user credentials to authenticate with proxy NTLM auth (SSO) |
http_proxy.credentials.reuse_kerb | reuse current computer user credentials (Kerberos ticket) to authenticate with proxy Negotiate auth (SSO) |
Supported authentication schemes:
SOCKS proxy
Configuration key | Description |
---|---|
socks_proxy.version | SOCKS version (4 or 5) |
socks_proxy.host | SOCKS proxy host |
socks_proxy.port | SOCKS proxy port |
No authentication scheme supported.
TLS
Configuration key | Description |
---|---|
tls.ca_cert_path | relative or absolute filepath to the CA certificate file |
tls.cert_path | relative or absolute filepath to the instance certificate file |
tls.key_path | relative or absolute filepath to the private key file |
tls.key_password | key password |
tls.dh_path | relative or absolute filepath to the Diffie-Hellman file (server only) |
tls.cipher_alg | cipher algorithm |
With default options, the following files and folders should be in the working directory of the client or the server:
./certs/dh4096.pem
./certs/certificate.crt
./certs/private.key
./certs/trusted/ca.crt
Where:
If you want those files at different paths, it is possible to customize them thanks to the TLS path keys:
{
“ssf”: {
“tls” : {
“ca_cert_path”: “./certs/trusted/ca.crt”,
“cert_path”: “./certs/certificate.crt”,
“key_path”: “./certs/private.key”,
“key_password”: “”,
“dh_path”: “./certs/dh4096.pem”,
“cipher_alg”: “DHE-RSA-AES256-GCM-SHA384”
}
}
}
Using configuration file only
Configuration key | Description |
---|---|
tls.ca_cert_buffer | CA certificate file content in PEM format (⚠️ \n between data and PEM header/footer) |
tls.cert_buffer | instance certificate file content in PEM format (⚠️ \n between data and PEM header/footer) |
tls.key_buffer | private key file content in PEM format (⚠️ \n between data and PEM header/footer) |
tls.key_password | key password |
tls.dh_buffer | Diffie-Hellman parameters file content in PEM format (⚠️ \n between data and PEM header/footer, server only) |
tls.cipher_alg | cipher algorithm |
You can integrate the TLS parameters directly into the configuration file by using the tls.ca_cert_buffer
, tls.cert_buffer
, tls.key_buffer
and tls.dh_buffer
keys.
{
“ssf”: {
“tls” : {
“ca_cert_buffer”:”—–BEGIN CERTIFICATE—–\n…\n—–END CERTIFICATE—–“,
“cert_buffer”:”—–BEGIN CERTIFICATE—–\n…\n—–END CERTIFICATE—–“,
“key_buffer”:”—–BEGIN RSA PRIVATE KEY—–\n…\n—–END RSA PRIVATE KEY—–“,
“key_password”: “”,
“dh_buffer”:”—–BEGIN DH PARAMETERS—–\n…\n—–END DH PARAMETERS—–“,
“cipher_alg”: “DHE-RSA-AES256-GCM-SHA384”
}
}
}
Certificates, private keys and DH parameters must be in PEM format. ⚠️ \n
between data and PEM header/footer are mandatory.
Microservices
Configuration key | Description |
---|---|
services.*.enable | enable/disable microservice |
services.*.gateway_ports | enable/disable gateway ports |
services.shell.path | binary path used for shell creation |
services.shell.args | binary arguments used for shell creation |
SSF’s features are built using microservices (TCP forwarding, remote SOCKS, …)
There are 7 microservices:
Each feature is the combination of at least one client side microservice and one server side microservice.
This table sums up how each feature is assembled:
ssf feature | microservice client side | microservice server side |
---|---|---|
-L : TCP forwarding | stream_listener | stream_forwarder |
-R : remote TCP forwarding | stream_forwarder | stream_listener |
-U : UDP forwarding | datagram_listener | datagram_forwarder |
-V : remote UDP forwarding | datagram_forwarder | datagram_listener |
-D : SOCKS | stream_listener | socks |
-F : remote SOCKS | socks | stream_listener |
-X : shell | stream_listener | shell |
-Y : remote shell | shell | stream_listener |
This architecture makes it easier to build remote features: they use the same microservices but on the opposite side.
ssf
and ssfd
come with pre-enabled microservices. Here is the default microservices configuration:
{
“ssf”: {
“services”: {
“datagram_forwarder”: { “enable”: true },
“datagram_listener”: { “enable”: true },
“stream_forwarder”: { “enable”: true },
“stream_listener”: { “enable”: true },
“socks”: { “enable”: true },
“copy”: { “enable”: false },
“shell”: { “enable”: false }
}
}
}
To enable or disable a microservice, set the enable
key to true
or false
.
Trying to use a feature requiring a disabled microservice will result in an error message.
How to generate certificates for TLS connections
Manually
openssl dhparam 4096 -outform PEM -out dh4096.pem
First of all, create a file named extfile.txt containing the following lines:
[ v3_req_p ]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
Then, generate a self-signed certificate (the CA) ca.crt and its private key ca.key:
openssl req -x509 -nodes -newkey rsa:4096 -keyout ca.key -out ca.crt -days 3650
Generate a private key private.key and a certificate signing request certificate.csr:
openssl req -newkey rsa:4096 -nodes -keyout private.key -out certificate.csr
Generate the certificate (certificate.pem) by signing the CSR with the CA (ca.crt, ca.key):
openssl x509 -extfile extfile.txt -extensions v3_req_p -req -sha1 -days 3650 -CA ca.crt -CAkey ca.key -CAcreateserial -in certif
shadow-rs is a Windows kernel rootkit written in Rust, demonstrating advanced techniques for kernel manipulation…
Extract and execute a PE embedded within a PNG file using an LNK file. The…
Embark on the journey of becoming a certified Red Team professional with our definitive guide.…
This repository contains proof of concept exploits for CVE-2024-5836 and CVE-2024-6778, which are vulnerabilities within…
This took me like 4 days (+2 days for an update), but I got it…
MaLDAPtive is a framework for LDAP SearchFilter parsing, obfuscation, deobfuscation and detection. Its foundation is…